Categories
Coffee cup science Home experiments Observations

Cracking Magnets

Rare earth magnets are very strong despite their size. These magnets are several times stronger than an ordinary fridge magnet.

Can you hear it? The first, second and then third and fourth cracks as a magnet is brought near a magnetic (but not magnetised) material, such as a piece of cutlery? Unlike the first and second cracks during coffee roasting, which are clearly audible, it is unlikely that you would have actually heard the cracks of a magnet. To hear them you would need to amplify the effect and connect it to a loudspeaker (there’s a link to how you can do this experiment here). Nonetheless, if you were to do so, you would hear the cutlery cracking. And while these sounds are not connected to the first and second cracks in coffee roasting, they are connected, via physics, to coffee. To see why we need to think a bit more about what is causing these magnetic creaking noises.

The effect is known as the Barkhausen effect after Heinrich Barkhausen who discovered it in 1919. It turns out the the effect reveals quite a lot about how magnets work because it reveals what is going on at an atomic level in the kitchen fork. Some metals are attracted to magnets but not others. So a fridge magnet would stick onto materials containing iron but would not stick to a sheet of aluminium; we can pick up pins, paper clips and some cutlery with a strong magnet but we could not pick up a piece of kitchen foil. These iron containing metals are magnetic but not magnetised, they will be attracted to a magnet but they will not ordinarily attract other items to themselves. We may remember from school that we can make them magnetised by continuously stroking a strong magnet along the length of the pin (or fork, or paper clip) until the pin itself is able to attract other pins to it. We may even remember the explanation for this which was that for something to be magnetised, it had to have a clear magnetic orientation of North-South throughout its structure. Within the pin (or fork or paper clip) there are many small regions, called domains, which within themselves have a north-south orientation but they do not all point in the same way throughout the fork. Each little region points in a different direction to the others and so the net effect is that there is no overall North-South magnetism in the fork as a whole. As the strong magnet is used to stroke the fork, so the small regions move to align to the direction of the stroke of the magnet. The regions stop cancelling each other out and align so that the fork itself becomes a magnet with its own North-South.

inverted Aeropress and coffee stain
The link between coffee and the Barkhausen effect in magnets can be seen in this photo: a coffee spillage. It is the way that coffee evaporates and that coffee stains form that forms this physics connection between coffee and magnetism.

To return to our un-magnetised fork, you can imagine that where all these domains meet, there will be an area of confusion where the direction changes from one orientation to that of the neighbouring domain. This is called a ‘domain wall’ and it is these domain walls that are responsible for the Barkhausen effect. You can feel the effects of domains and domain walls in this experiment taken from the Institute of Physics Spark series: take two flat fridge magnets and turn them over so that the magnetic side of each faces the other. Move one of the magnets along the length of the other one. Think about how it feels to move it. Now move the same magnet perpendicular to the direction that you initially moved it in. Try it again. You will find that in one direction the movement feels smooth whereas in the other the magnets judder against each other, the movement is not smooth at all. You are feeling the effects of moving across a series of domains and domain walls, you can read more about the experiment here.

What actually happens as you bring a strong magnet towards an object such as a fork is that those domains in the fork that are aligned in the same direction as the magnet will tend to grow slightly at the expense of the ones that are not aligned with the magnet. The initial growth happens as the aligned domains get a bit bigger, a bit rounder and fatter. The domain walls bend a bit and the domains of the non-aligned regions get a bit thinner, a bit more squished. As the magnet is brought closer still, the aligned domains will actually start to grow at the expense of the non-aligned: the domain walls of the aligned domains will start to move outwards ‘eating’ into the neighbouring regions. It is at this point that you can pick up the Barkhausen effect because as the domain walls move, they can get stuck on defects in the metal rather like an elastic band would get stuck on an obstacle. The defect could be just one or two atoms that are out of place but the effect is that, just like the elastic band, the wall around the obstacle continues growing and the domain wall stretches more like an elastic band until pop – crack – the wall moves releasing a bit of energy that you pick up on the loudspeakers. This is what you hear as the Barkhausen effect. As the walls continue to grow so they will repeatedly get snagged on different defects in the metal and repeatedly ping – crack – into growth. Eventually, as the fork itself becomes magnetic* the last few non-aligned domains also start to align with the approaching strong magnet and the whole fork acts as if it is one magnet.

coffee ring, ink jet printing, organic electronics
A coffee stain. There are many experiments you can do at home with these.

The pinging domain walls have a direct link with an effect you can see in coffee, or more specifically spilled coffee. When you spill a few drops of coffee on a movable surface, you may have noticed that you can angle the surface a surprising amount before the drop starts to run down the side. You could try it now on a coaster if you have one available to you. The drop does not move because the edge is stuck, ‘pinned’, on defects on the surface of the coaster. These defects could be a crack in the material or a bit of dust or even a slight irregularity on the surface. Whatever it is, this defect acts to keep the edges of the drop in place. The first effect you would notice is that you can move the drop to a near vertical without it moving, the drop shape gets distorted but the drop itself does not move. The second effect is more subtle and is what happens if you leave the coffee drop there to dry.

Once spilled, the water in the droplet starts evaporating and eventually the droplet will dry leaving a coffee stain. The consequence of the pinning that you have just noticed is that the edges of the drop are quite stuck: the drop can’t just shrink. Instead, as the water evaporates, the drop will get flatter and because the water evaporates more quickly from the droplet edge (to see why click here), there will be a flow of water inside the drop from the centre to the edges. As the water flows outwards so it takes the coffee sediment with it which means that the dried coffee becomes a ring of sediment at the edge of the dried droplet.

Although it is on a different scale, it is the same sort of pinning that is happening in the coffee ring and in the Barkhausen effect. There are connections between physics and coffee to be found in many surprising places. Where will you find one today?

*This is an instance in which scientific English is not the same as English-English. In scientific-English, the fork is always a magnetic material it is just not fully magnetised. In English-English we tend to use the word ‘magnetic’ only for those materials that attract iron etc. to them. For ease of reading I have kept with the English-English usage here but if you are interested, you can read more in these links about magnetism and magnetic materials.

Categories
Home experiments Observations slow Tea

Time for tea?

Matcha, tea in Japan, frothy tea
A Matcha tea in Japan. A lot to contemplate here.

A recent article in Caffeine magazine caught my attention. Emilie Holmes of Good and Proper Tea was writing about the joys of appreciating loose leaf tea. While tea is a little diversion from coffee, January is traditionally a time to look forward as well as back and maybe, BeanThinking should occasionally cross over to the tea side. It was one line in particular of that article that puzzled me. Writing about the ‘naturally “slow” nature of the tea ritual’, Holmes observed that while brewing loose leaf tea you would be able to see “the leaves in a glass pot emit wisps of colour as they infuse…”

It was great to read someone who clearly had spent time carefully observing their tea. And yet that sentence prompted a series of questions in my mind. It was not that I doubted the observation, indeed, thinking back to teas I have made and enjoyed, I realise that I have seen these wisps before. It was more a question of why would it happen, why would the brewing tea emit lines of colour from the leaves? These lines must be telling us something.

diffusion, convection, tea brewing
A tea bag in hot water. The lines of tea are difficult to see in the photo, you’ll just have to do your own experiments, but, streaming from the bottom of the bag, you can see wisps of darker tea-water.

We need to think about how tea brews. A first mechanism would be through turbulence. Hot water poured onto a bed of tea leaves would stir them up and the resulting movement within the pot would mix the leaves with the water leading to a properly brewed cup of tea. This is very much the lazy tea brewers bag-and-cup method (which I can share). It would lead to a brewed tea, but it could not lead to a situation in which you could sit back and see wisps of colour. That requires calm and the quiet moments of a pot of tea brewing while you can enjoy the process.

A second mechanism would be through diffusion. Ultimately the same mechanism as the principle behind how LEDs work, diffusion is where the soluble parts of the tea leaves would travel, through the process of a random walk, throughout the water of the pot. This is a very slow process and we would expect that the concentration of colour would be most intense around the leaves and then fade out gradually with distance from the leaves. We would not expect ‘wisps’ nor lines of tea, that suggests something else.

It suggests the third mechanism of the tea brewing: a mix of diffusion and then convection within the hot water of the pot. The lines of tea are indicating that within the cup, regions of the hot water are at slightly different temperatures. Owing to the hot water being in contact with cooler air surrounding it, the surface of the water is cooling down and sinking, leading to a convective motion within the water inside. As the water moves it carries the diffused tea with it into new areas of the water, a movement of hot water to cooler water and back again. The tea is carried in a line because the convection patterns are occurring in small cells within the tea pot, small regions where hot tea is moving towards cooler tea which is warmed and itself moves. The convection does not happen as if the hot water is one big mass but a series of smaller ‘cells’. We see similar cells on the surface of the Sun. The lines are telling us of the movement in the tea pot and the amount and speed of their movement reveals more about how hot the water is relative to the air outside the pot.

diffusion only
A tea bag in cold water: This time, there are no wisps of tea as the drink brews. Instead, there is a slow diffusion of tea infused water from the bag outwards.

Testing this idea I required tea bags. My tea pots are opaque and so would not help me to appreciate this detail of brewing a cup of tea and so it was back to the bag-in-cup method. However, in order to avoid turbulence, I poured the water (hot or cool) into the mug before adding the tea bag. It was not the best way to make a tea, apologies to tea lovers, but it was a tea that I do not enjoy anyway, so it was good to use it up. Sure enough, when the tea bag was put into the hot water, within a very short time, wisps of coloured water formed lines curling underneath the bag. Why did they flow down? Was it because the tea in the bag was slightly cooler than the hot water and so, as the tea diffused out of the leaves it moved with convection downwards because of gravity and the fact that cooler water is denser? A tea bag in cool water however behaved differently. The water in the cup had been taken from the tap and then left in the cup for a couple of hours so that the water was definitely at the same temperature as the room. This time, the tea bag first floated and then sank to the bottom of the cup. There was no obvious infusion of the tea-coloured water into the plain water but slowly the region around the bottom of the tea cup at the bag turned browner with the tea. As time went on, this region expanded to give a tea layer and a water layer.

The wispy lines of tea only happened when using hot water. Which suggests a further experiment. How do these wisps change when brewing for black teas as opposed to green teas (which use a lower brewing water temperature)?

After about five minutes the tea brewed in hot water (left) was fairly evenly distributed throughout the cup whereas the tea brewed in cold water (right) showed a distinct layering between concentrated tea at the bottom of the cup and plain water above that layer.

One last observation with these tea bags in the hot water. Some of the tea floated within the bag, some sank, as time went on, more tea leaves fell towards the bottom of the bag (which was itself floating). What was happening there? Maybe if you experiment with your tea, you can let me know in the comments below, on Twitter or on Facebook. There are definite advantages to slowing down and brewing a proper cup of tea.

Categories
General Home experiments Observations

A short (lived) black

coffee at Story
A black coffee with bubbles on top. The colours on a bubble are the result of light interference. But sometimes the top of the bubble could appear black. What is happening there?

The long black can be distinguished from the Americano by the order in which the espresso and the water are added to the cup. This in turn will affect the type of bubbles on the surface of the coffee. As a guess, the long black (espresso last) will have many more but smaller bubbles than the Americano (water last) which will probably have larger, but fewer bubbles. Perhaps this guess is wrong, this could be an excuse to get out and drink more coffee.

We are used to the coffee being black and the bubbles on the surface reflecting a rainbow of shimmering colours that change with the light and with time before they finally burst. We know the physics of the colours on the bubbles: they are the result of the interference of reflections from the outer and inner surface of the bubble cancelling out certain colours and adding to others dependent on the bubble skin’s thickness. But what about black bubbles? Or, if not entirely black, perhaps the cap of the bubble can, for a short while, appear black just before the bubble bursts?

It is easier to take a short break from coffee and look for this effect in soap films. Like the bubbles on coffee, soap bubbles are caused by the surfactant in the soap solution having a hydrophilic (water loving) and hydrophobic (water hating) end. The hydrophilic end of the surfactant can point into the water (coffee) leaving the hydrophobic end to form a surface. When this is agitated with air, the hydrophilic ends remain contacted with water resulting in bubbles which are thin layers of water surrounded by these surfactant molecules. In coffee the surfactant is not soap but is formed by the lipids and fatty acids. These bubbles are therefore slightly weaker than the soap based bubbles and so while they will form on a coffee, it is not easy to make a film of a coffee bubble in the same way as you can dip a wire loop into a soap solution and come out with a soap film.

However, we can use the stability of the soap film to investigate the colours in the coffee bubbles and watch the colours evolve with time. At this point, I would strongly encourage anyone reading to grab a solution of soap and a wire loop and start playing with soap films.

Soap film in a wire loop held by a crocodile clip.
A soap film in a wire loop showing reflected horizontal coloured bands that are the result of light interference.

Holding the wire loop so that the soap film is vertical with a light source shining at it, we can watch as the film changes from being uniformly transparent to having bands of colour form and move down the film. We watch as there is a red/green band and another red/green band and then on top of the bands there appears a white, or at least pale blue, almost white, band and above that a layer that doesn’t reflect the light at all. If we view the soap film against a dark background looking only at the reflected light, this top portion of the film appears black. Rotating the loop we can see that the bands effectively stay in the same position because it is gravity pulling on this soap film that is causing the film to be thicker at the bottom than at the top. And we recognise that the coloured bands are revealing that thickness change to us by the fact that they are changing throughout the film. If we are careful as we rotate the wire, we could even see vortex like motions as the layers settle into their new position relative to the frame including at the very top where there are swirls and patches of fluid that mix the black layer with the coloured bands. What is going on there?

In fact, this black layer is one of the thinnest things that they human eye can see, and it occurs because of a subtle piece of physics. All waves have a number of properties defined by the position of the peaks and troughs on the wave. The wavelength is the distance between two equivalent points on the wave. The amplitude is the height of the peak (or trough). And the phase is the position of the wave relative to the peak (or trough). When light is reflected at a surface of a material that has a refractive index greater than that which the light is travelling through (eg. air into water, soap, or glass), the reflected wave has a 180 degree phase shift relative to the incident wave. Each peak becomes a trough, each trough becomes a peak. When light is already travelling through water, soap or glass and gets reflected at the surface of the material that is effectively air, there is no phase shift and the light is reflected back with the same phase as the incident wave (a peak remains a peak and a trough a trough).

At the top of the soap film, the layer is so thin that the light reflected from the first surface (180 degree shift) overlays that reflected from the back surface (no phase shift) so that peak and trough cancel each other out and we see no light reflected whatsoever for any visible wavelength; the surface looks black.

As bubbles ‘ripen’ or age, they will become thinner at the top of the bubble. It is at this point that you may be lucky enough to see a region of the bubble from which no light is reflected, this is the black film.

Which leads to some immediate questions. When we look carefully at the soap film, the boundary between the upper white band and the black film is quite sharp, it is not gradual as we may expect if the soap film were completely wedge shaped with gravity. It suggests that the top of the film is very thin and then suddenly gets thicker at the point where we start to see the colour bands. Moreover, the black film does not appear to mix with the thicker film just beneath it. As we watch, just before the soap film bursts, we get turbulence between the black layer and the thicker film, but the turbulent patterns appear like two fluids next to each other, not the same fluid in a continuum. And then, one final question. If we can’t measure the thickness of the black film with light (because it is all reflected as black) how can we know how thick this film is? If we rely on the light interference method, all we can say is how much thinner it is than the wavelength of light.

In fact, careful experiments have revealed two types of black film, which to us experimenting at the kitchen table would be indistinguishable. There is the common black film and the Newton black film. The Newton black film is effectively two layers of surfactant molecules only and is about 5nm thick (which is 5 millionths of a millimetre). The common black film is thicker, but is still much less than 100 nm thick. Investigating how these films behave is still an active area of research.

One last observation may prompt us to play for a bit longer with the soap films. Johann Gottlob Leidenfrost (1715-94) noted that if you put a sharp object such as a needle through the region of the soap film that showed the coloured bands, the film could self-heal and wouldn’t necessarily burst. If however you pierced the black region of the film, the film always burst entirely.

It seems that we could play endlessly with soap films, perhaps while watching the bubbles in our coffee. However you enjoy your coffee, have fun experimenting.

A couple more soap films showing reflected coloured interference bands. At the top, the film has become so thin that no light is reflected (clearly seen in the image on the right, where the lamp in the top left should be a circular reflection but is not reflected in the region above the coloured bands). In the image on the left, you can see what looks like turbulence or mixing just above the uppermost band.
Categories
Home experiments Observations Science history

To err is human…

Press Room coffee Twickenham
A smaller V60. For one cup you would use less coffee, but the errors on the measurement will always be there.

Preparing a good V60 requires 30g of coffee (for 500 ml of water)*. This can be measured using a set of kitchen scales, but a first estimate can also be obtained, if you are using whole coffee beans, by timing the passage of the grind through the grinder. Using an Ascaso burr grinder, my coffee used to come through at an approximate rate of 1g/s, so that, after 30 seconds, I’d have the perfect amount of coffee. Recently however this has changed, depending on the bean, sometimes 30g is 40 seconds, sometimes just less than 30 seconds.

Clearly there is an error on my estimate of the rate of coffee grinds going through the grinder. This may be influenced by factors such as the hardness of the bean (itself influenced by the degree of roast), the temperature of the kitchen, the cleanliness of the grinder and, the small detail that the ‘seconds’ measured here refers to my counting to 30 in my head. Nonetheless, the error is significant enough that I need to confirm the measurement with the kitchen scales. But are the scales free of error?

Clearly in asking the question, we know the answer will be ‘no’. Errors could be introduced by improper zero-ing of the scales (which is correct-able), or differences in the day to day temperature of the kitchen (not so correct-able). The scales will also have a tolerance on them meaning that the measured mass is, for example, only correct to +/- 5 % Depending on your scales, they may also only display the mass to the nearest gramme. This means that 29.6g of coffee would be the same, according to the scales, as 30.4g of coffee. Which in turn means that we should be using 493 – 507 ml of water rather than our expected 500 ml (the measurement of which also contains an intrinsic error of course).

Turkish coffee
A Turkish coffee provides a brilliant illustration of the type of particle distribution with depth that Jean Perrin used to measure Avogadro’s constant. For more information see here.

The point of all of this is that errors are an inescapable aspect of experimental science. They can also be an incredibly helpful part. Back in 1910, Jean Perrin used a phenomenon that you can see in your coffee cup in order to measure Avogadro’s constant (the number of molecules in a mole of material). Although he used varnish suspended in water rather than coffee, he was able to experimentally verify a theory that liquids were made up of molecules, by the fact that his value for Avogadro’s constant was, within error, the same as that found by other, independent, techniques. Errors also give us an indication of how confident we can be in our determination of a value. For example, if the mass of my coffee is 30 +/- 0.4 g, I am more confident that the value is approximately 30 g than if the error was +/- 10 g. In the latter case, I would get new scales.

But errors can also help us in more subtle ways. Experimental results can be fairly easily faked, but it turns out that the random error on that data is far harder to invent. A simple example of this was seen in the case of Jan Hendrik Schön and the scientific fraud that was discovered in 2002. Schön had shown fantastic experimental results in the field of organic electronics (electronic devices made of carbon based materials). The problem came when it was shown that some these results, despite being on different materials, were the same right down to the “random” noise on the data. Two data sets were identical even to the point of the errors on them, despite their being measurements of two different things.

A more recent case is a little more subtle but crucial for our understanding of how to treat Covid-19. A large study of Covid-19 patients apparently showed that the drug “Ivermectin” reduced mortality rates enormously and improved patient outcomes. Recently it has been shown that there are serious problems with some of the data in the paper, including the fact that some of the patient records have been duplicated and the paper has now been withdrawn due to “ethical considerations”. A good summary of the problems can be found in this Guardian article. However, some of the more worrying problems were a little deeper in the maths behind the data. There were sets of data where supposedly random variables were identical across several patients which suggested “that ranges of cells or even entire rows of data have been copied and pasted“. There were also cases where 82% of a supposedly random variable ended in the digits 2-5. The likelihood of this occurring for random variables can be calculated (it is not very high). Indeed, analysis of the paper showed that it was likely that these values too were either copy and pasted or “invented” because humans are not terribly good at generating properly random numbers.

A gratuitous image of some interesting physics in a V60. If anyone would like to hire a physicist for a cafe, in a 21st century (physics) recreation of de Moivre’s antics at Old Slaughters, you know how to contact me…

Interestingly, a further problem both for the Ivermectin study and for the Schön data comes when you look at the standard deviation of the data. Standard deviation is a measure of how variable is the measured outcome (e.g. duration of time a patient spent in hospital). For the ivermectin study, analysis of the standard deviations quoted on the patient data indicated a peculiar distribution of the length of hospital stay, which, in itself would probably just be a puzzle but in combination with the other problems in the paper becomes a suggestion of scientific fraud. In Schön’s data on the other hand, it was calculated that the precision given in the papers would have required thousands of measurements. In the field in which Schön worked this would have been a physical impossibility and so again, suggestive of fraud. In both cases, it is by looking at the smaller errors that we find a bigger error.

This last detail would have been appreciated by Abraham de Moivre, (1667-1754). As a mathematician, de Moivre was known for his work with probability distribution, which is the mathematics behind the standard deviation of a data set. He was also a well known regular (the ‘resident’ mathematician) at Old Slaughters Coffee House on St Martin’s Lane in London[1]. It is recorded that between 1750 and 1754, de Moivre earned “a pittance” at Old Slaughters providing solutions to games of chance to people who came along for the coffee. I wonder if there are any opportunities in contemporary London cafes for a resident physicist? I may be able to recommend one.

*You can find recipes suggesting this dosage here or here. Some recipes recommend a slightly stronger coffee amount, personally, I prefer a slightly weaker dosage. You will need to experiment to find your preferred value.

[1] “London Coffee Houses”, Bryant Lillywhite, 1963

Categories
General Home experiments Observations Science history

Up in the air with a Pure Over Brewer

The diffuser sitting on top of the Pure Over coffee brewer. The holes are to ensure that the water falls evenly and slowly onto the grounds below.

The Pure Over is a new type of coffee brewer that is designed to brew filter coffee without the need for disposable paper filters. The brewer, which is completely made of glass, is a perfect size for brewing one cup of coffee and, as promised, makes a lovely cup without the need for wasteful paper filters. Generally, for 1-cup filter coffees, the Pure Over has become my go-to brewing method, although it does have a few idiosyncrasies to it that are helpful to be aware of while brewing.

An advantage of this brewing device is that it provides a large number of opportunities for physics-watching, including a peculiar effect that connects brewing coffee to an air balloon crash into the garden of a London Coffee House. It concerns a feature of the Pure Over that is specific to this particular brewing device: the ‘diffuser’ that sits on top of it.

The glass diffuser has five small holes at the bottom of it which are designed to reduce the flow of the water onto the coffee bed so that it is slower and more gentle. In order to avoid the paper filters, the Pure Over features a filter made of holes in the glass at its base. This filter does surprisingly well at keeping the coffee grounds out of the final brew, but it works best if the coffee bed just above it is not continuously agitated. The idea of the diffuser is that the coffee grounds are more evenly exposed to the water, with the grounds closest to the filter being least disturbed and so the coffee is extracted properly.

As water is poured from a kettle through the diffuser, the water builds up in the diffuser forming a pool that slowly trickles through the holes. Initially this process proceeds steadily, the water is poured from the kettle into the diffuser and then gently flows through and lands on the coffee. At one point however, the pressure of the steam within the main body of the brewer builds until it is enough to push the glass diffuser up a bit, the steam escapes and the diffuser ‘clunks’ back onto its base on top of the pure over. Then, this happens again, and again, until there is a continuous rattle as the steam pressure builds, escapes and builds once more.

The ideal gas laws, such as that found by Jacques Charles, relate the volume and pressure of a gas to its temperature. The application of the laws helped to improve the design of steam engines such as this Aveling and Porter Steam Roller that has been preserved in central Kuala Lumpur, Malaysia.

The pressure of the steam builds until the force exerted upwards by the rising steam is greater than the weight of gravity pulling the diffuser down. Once enough gas escapes, the pressure is reduced and so the steam no longer keeps the diffuser aloft which consequently drops with a clunk. The motion could take our thoughts to pistons, steam engines and the way that this steam movement was once exploited to drive our industrial revolution. Or you could go one stage earlier, and think about the gas laws that were being developed shortly before. There’s Boyle’s Law which relates the pressure of a gas to its volume (at constant temperature). That would perhaps partially explain the behaviour of the pure over. But then there’s also Jacques Charles and his observation that the volume of a gas is proportional to its temperature (at constant pressure). This too has relevance for the pure over because as we pour more water in from the kettle, we warm the entire pure-over body and so the temperature of the gas inside will increase. Consequently, as the amount of hot water in the pure over increases, the temperature goes up, the volume of that gas would increase but is stopped by the diffuser acting as a lid. This leads to the pressure of the gas increasing (Boyle) until the force upwards is high enough, the diffuser lid rises upwards on the steam which escapes leading the pressure to once again drop and the diffuser top to go clunk and the whole cycle begins again.

Of course, we know that Boyle’s law is appropriate for constant temperature and Charles’s law is appropriate for constant pressure and so the laws are combined together with the Gay-Lussac/Amonton law into the ideal gas laws which explain all manner of things from cooling aerosols to steam engine pistons. And yet, they have another connection, which also links back to our pure over, which is the history of hot air balloons.

Charles discovered his law in around 1787, a few years after the first non-tethered hot air balloon ascent, in Paris, in June of 1783. The hot air balloon is a good example of the physics that we can see in the pure over. Although Charles must have suspected some of the physics of the hot air balloon in June, he initially decided to invent his own, hydrogen filled balloon which he used to ascend 500 m in December of 1783. Hydrogen achieves its lift because hydrogen is less dense than air at the same temperature. However, it is the hydrogen balloon that links back to coffee and coffee in London.

hot air balloon
The ideal gas laws also contribute to our understanding of the operation of hot air balloons. We are familiar with them now, but how would such an object have been perceived by observers at the time of the first flights?

The first balloon flight in England took place using a hydrogen, not a hot-air, balloon in 1785. The balloon was piloted by Vincenzo Lunardi who was accompanied by a cat, a dog and, for a short while, a pigeon (before it decided to fly away). But it was not this successful flight that connects back to coffee, it was his maiden flight on 13 May 1785. On that day, Lunardi took off from the Honourable Artillery Company grounds in Moorgate, flew for about 20 minutes and then crashed, or as they said at the time “fell with his burst balloon, and was but slightly injured”(1) into the gardens of the Adam and Eve Coffee House on the junction of Hampstead Road and, what is now, Euston Road. In the 1780s the Adam and Eve coffee house had a large garden that was the starting point for walks in the country (in the area now known as Somers Town)(2). Imagine the scene as, quietly appreciating your tea or coffee, a large flying balloon crashes into the garden behind you.

The Adam and Eve is no longer there, in fact, its original location now seems to be the underpass at that busy junction, and the closest coffee house is a branch of Beany Green. However there is one, last coffee connection and it brings us back to the pure over. The pressure of the steam under the diffuser needs to build until the upwards force of the steam can overcome the gravitational force down of the weight of the glass diffuser. In the same way Lunardi had to have enough lift from the hydrogen balloon to compensate for the weight of the balloon and its passengers. Lunardi had wanted to be accompanied by another human on the day of his successful flight. Unfortunately, the mass of two humans in a balloon was too much for the balloon to accommodate which is why, the human was replaced by the dog, the cat and the pigeon.

Which may go some way to illustrate how far the mind can travel while brewing a cup of coffee, particularly with a brew device as full of physics as the Pure Over.

1 London Coffee Houses, Bryant Lillywhite, George Allen and Unwin publishers, 1963

2 The London Encyclopaedia (3rd edition), Weinreb, Hibbert, Keay and Keay, MacMillan, 2008

Categories
Home experiments Observations

Viewing an eclipse, the coffee way

NASA image of annular eclipse from space
A different perspective? This is the view looking towards Earth of the 2017 Annular solar eclipse over South America. Taken by the EPIC DSCOVR project of NASA.

This week, on Thursday, June 10th, 2021, there will be a solar eclipse. If you are at high latitudes in the Northern Hemisphere including parts of Canada, Greenland and Siberia, you will see a so-called ring of fire as the moon moves in front of the Sun. At lower latitudes the eclipse will be much more partial and in London we are expecting to see 20% of the Sun obscured by the Moon.

You can read more about solar eclipses on other websites such as here or here, on Bean Thinking, we are going to focus on the coffee links to the eclipse.

The first coffee link comes in how to view it. This website suggested a number of ways of viewing the eclipse, one of which was to use a colander. This suggests a perfect adaptation to a view via coffee: the Aeropress filter cap. The idea behind the method is that each of the holes provides a type of pin-hole camera to image the Sun. Knowing roughly where the Sun will be at 10.06am (BST = UTC+1), we can construct a device to hold the aeropress filter cap so that we can see 97 images of the Sun projected onto a piece of paper: 97 images of the Sun to be eclipsed over the following 2hours 18 minutes. The maximum eclipse is around 20% of the solar disc and occurs at approximately 11.15 (although the exact fraction obscured and timing depends on your location). The Aeropress Eclipse viewing device shown in the photo here has an added (smaller) pin hole which should provide a more focussed image of the Sun and so will provide a second way of imaging the eclipse.

A second coffee link comes with thinking about why this particular solar eclipse is not ‘total’ anywhere on earth but is instead described as annular. And to do this, we’ll think about a coffee bean. The amazing visual spectacle of a total solar eclipse occurs because the moon is 400 times smaller than the Sun but is (on average) about 400 times closer to the Earth. So when we think about looking at a coffee bean, held at arms length from our eye (about 60cm), it would totally obscure (eclipse) an object 3.2 m tall, 233.5 m away*.

Eclipse viewer
An aeropress based device for viewing the eclipse. The strings attached to the cardboard flap at the top allow the angle of the aeropress filter cap to be fixed at different points. The camera is at the approximate point where the images will be projected onto paper.

The word “average” though hides an important detail that neither the Moon’s orbit around the Earth, nor the Earth’s orbit around the Sun are completely circular. On the 10th June 2021, the Moon will be two days past its maximum distance (apogee) from the Earth, and while the Sun is also nearly at its maximum distance, the distance ratio will mean that the Moon does not entirely obscure the Sun. Instead, if we return to our coffee bean analogy, it is the equivalent of stretching our arm 2 more centimetres and noticing that the object that was obscured is no longer completely obscured.

This will still make for a fantastic view if you are in Greenland, Siberia or happen to be at the North Pole where you will see a dark disc surrounded by a ring of Sun. For those of us further south, we will only see the Sun partially obscured by the Moon. Nonetheless, such an opportunity in any one particular location doesn’t come super-often (although worldwide there are often several eclipses per year, in London there will only be 42 partial eclipses in this current century). And in London, we have to worry about the weather too. So, if the weather is good for you, why not have a go viewing it, particularly if you adapt a piece of coffee brewing equipment to do so, and post your pictures of the effect here, or to Bean Thinking on Twitter or Facebook.

Finally, the timing of the eclipse is perfect for a mid-morning coffee, though maybe you’ll have to brew with something other than the Aeropress. Have fun.

*These figures have been calculated using a ratio of the size of the Moon to the Sun as 1:400.8 and an average distance of 1:389.2 (calculated from the average values). The distances on June 10 2021 mean that the distance ratio is closer to 1:377

Update to post, the day before (9 June 2021): This is the Aeropress viewing device in action, but 24h before the eclipse. Will the clouds stay away tomorrow?

The Aeropress Eclipse viewer in action. The images of the Sun are projected onto the cardboard behind the filter cap.

Update 10 June 2021: It was cloudy in London and I couldn’t get the Aeropress filter cap method to work in the brief periods of sunshine during the eclipse. Suspect it was a problem with focus-distance/angle/remaining cloud cover at points. However, the smaller pinhole did work (see the blurry image below) and the clouds did mean that there was a natural filter that made a direct photograph possible (see below). Do share your images here if you managed to view it.

Although there were brief periods without cloud, focussing issues etc. meant that I couldn’t get the Aeropress filter cap viewing method to work. Maybe for the next one!
A smaller pinhole did give an image of the Sun being eclipsed (lower blurry bright image)
The fact that it was cloudy did mean however that I could take a photograph of the eclipsed Sun directly. This was at about 11.10am (5 minutes or so before the maximum point of eclipse)
Categories
General Home experiments

Filtering

When you prepare a filter coffee with a paper filter, you typically rinse the filter before starting the brewing process. As you do so the paper swells and can absorb several ml of water.

The other morning while preparing a V60, I noticed that the filter paper absorbed between 3-6g of water (3-6ml) each time I rinsed the filter before making a new coffee. My mind wandered to re-hydrating space food and the importance of water in the texture of the food we eat (and coffee we drink). And then I was reminded of a question I had been asked during these Covid-19 times: would a face mask that is damp work better, or worse, than a dry one for reducing the transmission of SARS-CoV-2, the virus that causes Covid-19?

The answer did not seem obvious. On the one hand, when we wet the paper filter while brewing coffee, the fibres within the paper swell and reduce the pore size of the filter. It seems likely that cotton fibres in a mask would behave similarly. This would have the effect of slowing and reducing the transmission of particulates through the mask. But on the other hand, we’re not thinking about particulates but about small amounts of viral material hosted in water droplets that are somehow exhaled. I decided on the “no idea” response at the time and put the question aside. Until the other morning while preparing coffee.

Unsurprisingly this question, and many like it are now the subject of intense research. I say unsurprisingly because a few years ago a new family of superconductors was discovered with (relatively) very high transition temperatures*. I was on holiday at the time but when I returned, it was to a large number of emails and ideas for experiments on these new materials that became known as the iron based superconductors. We had our first paper on these materials within a couple of months which, like all papers on this at the time, was uploaded, without peer review, to a pre-print server. Eventually most of the papers on the pre-print server got published in peer-reviewed journals, but this process was slow because it relied (and still does) on other scientists reading and taking the time to carefully respond to the points in your manuscript, then for you to address these points, for them to read it again and then, hopefully, ok the paper for publication. If you wanted to get the paper out and for a discussion to start, it had to be uploaded to the pre-print server.

canali Curators Coffee
Iron is a magnetic element. It was puzzling how a magnetic element could exist in a superconducting material and, moreover, seemed to make these materials even better superconductors than their non-magnetic counterparts.

Clearly, in order to keep up with scientists worldwide, we were looking at the pre-print server every morning looking for new ideas and new observations (and if anyone had done the same as we were trying to do at that precise moment but ‘beaten’ us to it). We had to be careful while assessing the claims in the pre-print papers. Some of the pre-prints were eventually withdrawn as they had made overblown claims (admittedly very few). Many were revised and had their claims either subtly altered or brought down a bit from hyperbole before being published in the journals. But none of this mattered to the world outside the lab because while exciting to us, and while the temperature of the transition was, from a physics perspective, very high, for the general public it would have been hard to get excited about materials that went superconducting below about 50 K or, in more common units, -223 C.

This side-story matters because, like our superconductors, the pandemic is the subject of intense research with much of it being uploaded to pre-print servers first so that scientists world wide can get into a conversation about the latest results. However, unlike our superconductors, the general public cares a great deal about a pandemic that is affecting us all and about the scientific rationale for measures such as mask-wearing, social distancing etc. While it is tempting to read the pre-prints, as I am not working in the field, it is not possible for me to read the papers on pre-print servers and be able to have a good guess as to whether the claims are reasonable, over blown or under-evidenced. So, I try to rely only on papers that are past the point of peer review and published in scientific journals. There is something very disheartening about reading an interesting newspaper report that near the end says “the study, which has not yet been peer-reviewed…”. Will the interesting study hold up? It is difficult, from outside the research area, to tell.

However, we need to get back to the masks and the filters. Was there a study, in the peer-reviewed and published literature, that looked at whether moistened masks performed better than non-moistened masks?

Masks: can we set up an experiment to see how effective ours are relative to the fitted N95s that are not available to most of us?
Masks: can we set up an experiment to see how effective ours are relative to the fitted N95s that are not available to most of us?

In fact, there is a lot of research on the effectiveness of masks. The research includes computer modelling, imaging of real people breathing/talking/coughing with and without masks and more reproducible tests where the mask material is tested using the conditions of a simulated sneeze. This last study also tested whether that simulated sneeze is contained better by a cloth mask (with filtration down to PM 2.5) or a damp cloth mask (with the same nominal filtration).

The different types of research are needed because they answer different types of question. How effective each type of mask is will depend on the type of material (tested with the simulated sneeze) and the way that people wear them (tested by the imaging of people wearing masks). While the computer modelling suggests what may happen in more ‘real life’ environments such as being outdoors with a gentle wind blowing.

In terms of the initial question about the damp masks, it turns out that the fact that the fibres in the mask swell with the water does indeed help reduce the droplet transmission through the mask material. But the authors caution that if the mask is worn for a longer period of time, the damp mask may get saturated with virus loaded droplets and so the mask would need to be changed (and refreshed with fresh water) frequently in order for it to be effective against transmission of the virus loaded droplets. (It’s also noteworthy that the effect of the damp mask was only tested for one mask type that may not be typical of what the general public wears). However, for most of us it would not be practical anyway to wear a damp mask. Moreover, if we were having to change the mask frequently, it may not be helpful for us at all. But the good news is that the imaging studies show that we don’t have to do either.

A fantastic report in Scientific Advances showed two things. First, that most masks that we wear properly give a significant benefit for the people around us. And secondly, they provided an experimental set up that can easily and relatively cheaply be replicated by people with a little technical knowledge and a mobile phone. However, given that ‘relatively cheaply’ still means about $200, I’ll take their results instead, if you don’t mind spending the money on a laser and some lenses (or happen to have some lying around), please do let me know how you get on.

Press Room coffee Twickenham
Another paper filter, this time at the Press Room, Twickenham. When we add water to a (dry) paper filter, the fibres within it swell and expand making it a better filter. Would the same happen with masks?

The authors took several of the types of face mask being worn by the public and imaged the droplets coming from a person speaking through each of them. The masks tested included surgical masks, N95 masks, and hand-made masks with 2-layers of cotton or 2-layers of cotton with an extra polypropylene layer in the middle. All of these masks reduced the droplets transmitted through the mask significantly. Indeed, relative to no-mask, some home-made multiple cotton layer masks cut the droplets by nearly a factor of 10. The exceptions were bandanas and neck gaiters. The bandanas that were tested only cut the droplets getting through by a factor of 2, but the gaiters were worse. Speaking through the neck gaiter that they tested, the authors observed that the number of droplets getting through the gaiter actually increased relative to speaking wearing no mask. While this seems counter-intuitive, they suggested that this was likely because the gaiter was breaking up the larger droplets into multiple smaller droplets and so their equipment, which just measured the number of droplets, measured an increase relative to someone wearing no mask.

The problem here of course is, as the computer simulations showed, smaller droplets stay in the air for longer, larger droplets tend to fall with gravity. Something else that we know by thinking about our coffee.

So the final conclusion? Yes, it is possible that a damp mask may be better than a dry one though there are caveats on that result. But in actual fact, most masks that we wear in an indoor environment will help to protect other people (though maybe be careful with the gaiter materials). And a second conclusion? Perhaps preparing a coffee should be a time of escape from the concerns of coronavirus and really, next time, I should just enjoy the moment and think about re-hydrating space food.

*Actually, the iron-based superconductors had been discovered a couple of years previous to the excitement. But at that point, the reported transition temperatures were low enough that even the superconducting field was curious but not excited.

Categories
Home experiments Observations Science history slow

Missing matter

soya latte at the coffee jar camden
Not one made by me! But instead a soya-latte at the Coffee Jar a couple of years ago.

During these strange times of working from home, perhaps you, like me, have been preparing a lot more coffee. For me this has included, not just my regular V60s, but a type of cafe-au-lait for someone who used to regularly drink lattes outside. My previous-latte-drinker turns out to be a little bit discerning (the polite way of phrasing it) and so prefers the coffee made in a similar way each day. Which is why I’ve been weighing the (oat) milk I’ve been using.

So, each morning to prepare a coffee, I’ve been using a V60 recipe from The Barn and then, separately, weighing out 220g of refrigerated oat milk into a pan that I then heat on the stove. Generally I heat the milk for just over 5 minutes until it is almost simmering whereupon I pour it into a mug (with 110 – 130g of coffee inside – depending on the coffee). Being naturally lazy, I keep the cup on the scales so that it is easier to pour the milk in and then, completely emptying the pan into the coffee, the scales register an increase of mass (of milk) in the cup of 205-210g. Which means about 10-15g of milk goes missing each morning.

Now clearly it is not missing as such, it has just evaporated, but it does prompt a question: can this tell us anything about the physics of our world? And to pre-empt the answer, it actually tells us a great deal. But to see how, we need to go on an historical diversion to just over three hundred years ago, when Edmond Halley was presenting an experiment to the Royal Society in London. The experiment shares a number of similarities with my heated oat milk pan. It was later written into a paper which you can read online: “An estimate of the quantity of vapour raised out of the sea by the warmth of the Sun; derived from an experiment shown before the Royal Society at one of their late meetings: by E Halley“.

lilies on water, rain on a pond, droplets
Coffee, evaporation, clouds, rain, rivers, seas, evaporation. Imagining the water cycle by making coffee.

Halley heated a pan of water to the temperature of “the Air in our hottest summers” and then, keeping the temperature constant, placed the pan on a set of scales to see how much water was lost over 2 hours. The temperature of the air in “our hottest summers” cannot have been very high, perhaps 25-30C and there was no evaporation actually seen in the form of steam coming from the pan (unlike with my milk pan). Nonetheless, Halley’s pan lost a total of 13.4g (in today’s units) of water over those two hours.

Halley used this amount to estimate, by extrapolation, how much water evaporated from the Mediterranean Sea each day. Arguing that the temperature of the water heated that evening at the Royal Society was similar to that of the Mediterranean Sea and that you could just treat the sea as one huge pan of water, Halley calculated that enough water evaporated to explain the rains that fell. This is a key part of the water cycle that drives the weather patterns in our world. But Halley took one further step. If the sea could produce the water for the rain, and the rain fed the rivers, was the flow of the rivers enough to account for the water in the Mediterranean Sea and, specifically, how much water was supplied to the sea compared to that lost through the evaporation? Halley estimated this by calculating the flow of water underneath Kingston Bridge over the Thames. As he knew how many (large) rivers flowed into the Mediterranean, Halley could calculate a very rough estimate of the total flow from the rivers into the Mediterranean.

Grecian, Devereux, Coffee house London
A plaque outside the (old) Devereux pub, since refurbished. The Devereux pub is on the site of the Grecian Coffee House which was one of the places that Halley and co used to ‘retire’ to after meetings at the Royal Society.

The estimates may seem very rough, but they were necessary in order to know if it was feasible that there could be a great water cycle of rain, rivers, evaporation, rain. And although Halley was not the first to discuss this idea (it had been considered by Bernard Palissy and Pierre Perrault before him), this idea of a quantitative “back of the envelope” calculation to prompt more thorough research into an idea, is one that is still used in science today: we have an idea, can we work out, very roughly, on the back of an envelope (or more often on a serviette over a coffee) if the idea is plausible before we write the research grant proposal to study it properly.

So, to return to my pan of oat milk simmering on the stove. 15g over 5 minutes at approaching 100C is a reasonable amount to expect to lose. Only, we can go further than this now because we can take the extra data (from the thermostats we have in our house and the Met Office observations for the weather) of the temperature of your kitchen and the relative humidity that day and use this to discover how these factors affect the evaporative loss. Just as for Halley, it may be an extremely rough estimate. However, just as for Halley, these estimates may help to give us an understanding that is “one of the most necessary ingredients of a real and Philosophical Meteorology” as Halley may have said before he enjoyed a coffee at one of the Coffee Houses that he, Newton and others would retire to after a busy evening watching water evaporate at the Royal Society.

Categories
Coffee cup science General Home experiments Observations Science history

Telling the time with an Aeropress?

Aeropress bloom, coffee in an Aeropress
The first stage of making coffee with an Aeropress is to immerse the coffee grind in the water. Here, the plunger is at the bottom of the coffee.

On occasion, it takes a change in our routine for us to re-see our world in a slightly different way. And so it was that when there was an opportunity to borrow an Aeropress together with a hand grinder, I jumped at it. Each morning presented a meditative time for grinding the beans before the ritual of preparing the coffee by a different brew method. Each day became an opportunity to think about something new.

Perhaps it is not as immediately eye catching as the method of a slow pour of water from a swan necked kettle of a V60, and yet making coffee using the Aeropress offers a tremendously rich set of connections that we could ponder and contemplate if we would but notice them. And it starts with the seal. For those who may not be familiar with the Aeropress, a cylindrical ‘plunger’ with a seal tightly fits into a plastic cylinder (brew guide here). The first stage of making a coffee with the Aeropress is to use the cylinder to brew an ‘immersion’ type coffee, exactly as with the French Press (but here, the plunger is on the floor of the coffee maker). Then, after screwing a filter paper and plastic colander to the top of the cylinder and leaving the coffee to brew for a certain amount of time, the whole system is ‘inverted’ onto a mug where some coffee drips through the filter before the rest is forced out using the plunger to push the liquid through the coffee grind.

clepsydra creative commons license British Museum
A 4th century BC Ptolemaic clepsydra in the British Museum collection. Image © Trustees of the British Museum

Immediately perhaps your mind could jump to water clocks where water was allowed to drip out of two holes at the bottom of a device at a rate that allowed people to time certain intervals. It is even suggested that Galileo used such a “clepsydra” to time falling bodies (though I prefer the idea that he sang in order to time his pendulums). With many holes in the bottom of the device and an uneven coffee grind through which the water (coffee) flows, the Aeropress is perhaps not the best clock available to us now. However there is another connection between the Aeropress and the clepsydra that would take us to a whole new area of physics and speculation.

When the medieval thinker Adelard of Bath was considering the issue of whether nature could sustain a vacuum, he thought about the issue of the clepsydra¹. With two holes at the bottom and holes at the top for air, the clepsydra would drip the water through the clock at an even rate. Unless of course the holes at the top were blocked, in which case the water stopped dripping, (a similar thing can be observed when sealing the top of a straw). What kept the water in the jar when the top hole was blocked? What kept it from following its natural path of flowing downwards? (gravity was not understood at that point either). Adelard argued that it was not ‘magic’ that kept the water in when no air could go through, something else was at work.

What could be the explanation? Adelard argued that the universe was full of the four elements (air, water, fire, earth) which are “so closely bound together by natural affection, that just as none of them would exist without the other, so no place is empty of them. Hence it happens, that as soon as one of them leaves its position, another immediately takes its place… When, therefore, the entrance is closed to that which is to come in, it will be all in vain that you open an exit for the water, unless you give an entrance to the air….”²

inverted Aeropress and coffee stain
The Aeropress inverted onto a coffee cup before the plunger is pushed down. Complete with coffee stain behind the cup where the inversion process went awry.

Now, we would argue that whether the water flows down and out of the Aeropress, or not, depends on the balance of forces pushing the water down and those pushing it up. The forces pushing the water down and out of the clepsydra, or Aeropress, are gravity and the air pressure above the water in the cylinder. Pushing it up, it is only the air pressure from below. Ordinarily, the air pressure above and that below the water in the Aeropress are quite similar, gravity wins the tug of war and the water flows out. In an enclosed system however (if the holes at the top are blocked), were the water to flow out of the bottom, the air pressure above the coffee space would reduce. This makes sense because, if no new air gets in, the same amount of air that we had before now occupies a larger volume as the water has left it, the pressure exerted by that air will have to be less than before. A reduced air pressure means a reduced force on the water pushing it down through the filter and so the force pushing the water down can now be perfectly balanced by the force (from the surrounding air) pushing the water up: the water remains in the Aeropress. The only way we get the coffee out is to change the balance of forces on the water which means pushing down the plunger.

But perhaps it is worth stepping back and imagining what the consequences could be of having the idea that the universe was just full of something that had to be continuous. You may find it quite reasonable for example to consider that vortices would form behind and around the planets as they travelled in their circular orbits through this ‘something’*. Such vortices could explain some of the effects of gravity that we observe and so there would perhaps be no urgency to develop a gravitational theory such as the one we have. There would be other consequences, the world of vacuum physics and consequently of electronics would be significantly set back. In his lecture for the Carl Sagan Prize for Excellence in Public Communication in Planetary Science, The Director of the Vatican Observatory, Br Guy Consolmagno SJ explored previous scientific ideas that were almost right, which “is to say wrong” (You can see his lecture “Discarded Worlds: Astronomical Worlds that were almost correct” here) If it is true that so many scientific theories lasted so long (because they were almost correct) but were in fact wrong, how many of our scientific ideas today are ‘almost correct’ too?

It makes you wonder how our preconceptions of the world affect our ability to investigate it. And for that matter, how our ability to contemplate the world is affected by our practise of doing so. They say that beauty is in the eye of the beholder. For that to be true, the beholder has to open their eyes, look, contemplate and be prepared to be shown wrong in their preconceptions.

What connections do you make to your coffee brew each morning? I’d love to know, here in the comments, on Twitter or over on Facebook.

 

* Does a connection between this and stirring your freshly brewed Aeropress coffee with a teaspoon trailing vortices stretch the connectivity a bit too far?

¹ “Much Ado about Nothing: Theories of space and vacuum from the Middle Ages to the Scientific Revolution”, Edward Grant, Cambridge University Press, (1981)

² Quoted from Adelard of Bath’s “Quaestiones Naturales” taken from Much Ado about nothing, page 67.

Categories
General Home experiments Observations slow Tea

Corona gazing in cafes

interference patterns on coffee
There are many ways in which rainbows of colour are produced as light interacts with our coffee or in a cafe. Looking around yourself now, how many do you see? What physics underlies each?

As the nights grow longer and the days colder, we notice that windows steam up as the water vapour in the café condenses onto the cooler glass. Perhaps we see a similar thing on our glasses while we are drinking tea or on the windows of a bus. Initially we perhaps become frustrated at our inability to see what is going on outside but then we notice the colourful patterns around the lights of passing cars and of street lights. Haloes of coloured light around a central bright spot. What does this tell us and where else can we see it, either in a café or in life generally?

On a window pane, a large number of small droplets of water have condensed into what appears to us as a fog on the glass. As the light shines through from the car headlights, each droplet acts as an obstacle to the light and so bends it. You could see a similar effect with the waves on the sea going around stones or perhaps if you brew a large cup of coffee with the surface waves going around a spoon (let me know if you manage to see this bending in a coffee cup). The amount that the light bends is dependent on the wavelength of the light (look carefully at the waves going around obstacles in ponds to see this) and so different wavelengths (different colours) get bent by different amounts and interfere with each other at different points – a spectrum is produced. It is a phenomenon known as diffraction.

Not all beans are equal! How could you quickly distinguish between arabica and robusta beans?

This phenomenon means that we have a way of separating the frequencies (or wavelengths) of light. And so this means that we have a way of measuring the chemical composition of some substances as different chemicals absorb different frequencies and so have ‘fingerprints’ in the light they scatter. By passing the light scattered from a substance (such as arabica coffee beans compared to robusta) through a diffraction grating (which is an obstacle with a pattern of fixed size), we can separate the frequencies being scattered and see if any of them are ‘missing’ (ie. they have been absorbed by the material we’re studying). It would be  a bit like looking at that rainbow pattern in the café window and not seeing blue, its absence tells you something. This is one of the ways that robusta beans can be quickly found if they have been substituted for arabica beans in coffee trading.

Coffee Corona
Look carefully: Sometimes you can infer the existence of a thin (white) mist over your coffee by the corona pattern around reflected light fittings.

But it is not just its technological aspect that has interest for us surely? When gazing at the moon on a misty evening, the halo around the moon suggests the clouds between us and it. It is something that poets have remarked upon to evoke atmosphere, it is something that we can gaze at as we imagine the giant café window of our atmosphere. But the size, and distinctness of the lunar corona actually give us clues about the droplets making up the cloud. And then we look closer to home and to our own coffee and we see the same diffraction pattern again looking back at us from our coffee’s surface. Occasionally it is possible to see haloes on the coffee surface around the reflection of overhead lights in the café. A coffee corona! This reveals to us the fact that there are droplets of water above the surface of our coffee; an extra layer of hovering droplets. Something that we can sometimes see more directly in the dancing white mists.

Diffraction is a beautiful phenomenon that allows us to gaze and to contemplate how much we are able to deduce and how much we have yet to understand. How atmospheric our coffees and cafés are and the journey of understanding that we have taken to get to this point. Coffee gazing is a hobby that should be taken up by far more of us.

Bean Thinking noticing afternoons are going to start in London in early 2019. To find out more information, sign up to the Bean Thinking events list here:

Please enter your email address here if you would like to hear about future Bean Thinking events.