Categories
Coffee cup science General

Copper latte

Brew&Bread, latte art Sun, KL latte art
Taken at Brew & Bread, One City Mall, Subang, KL, Malaysia

Pop into any cafe and order a latte and chances are you’re going to see some great latte art. With the number of good baristas around competing to produce the best and most consistent latte art, it is easy to see some good art while waking up of a morning. Brew & Bread is a cafe with a couple of outlets in Kuala Lumpur in Malaysia. One of their customers sent me these images of their latte art (via Bean thinking on Facebook), which I think are among the finest examples I have seen of latte art being served, as a matter of course, at cafés. Apparently the people at Brew & Bread take their latte art very seriously, so if you find yourself in One City Mall, Subang or Kota Kemuning in Kuala Lumpur, do take the opportunity to pop in.

Not being a barista I can only guess at the skill that it takes to produce such great images as those at Brew & Bread. As a scientist though I can see some connections between latte art and copper mining. Or rather, the link between good latte art and bad copper mining (and vice versa). How? It’s all about the bubbles.

The small bubbles in the foam on the left trap coffee between them. The larger bubbles in the foam on the right allow coffee particles (and water) to leak and don't trap them so well.
The small bubbles in the foam on the left trap coffee between them. The larger bubbles in the foam on the right allow coffee particles to drain by gravity and don’t trap them so well.

Now, I am on dangerous ground here because I have no experience in making latte art, nor really in steaming milk, so I hope that any baristas out there will leap in and leave comments if I have something awry in my description of how latte art is sustained. However, from various videos and how-to’s available online it seems that a key component for good latte art is making the milk into a micro-foam; a ‘velvety’ structure of tiny bubbles. From a physics perspective this makes sense. As the milk is first introduced into the espresso it picks up the crema on the espresso and captures the coffee-liquid mixture between the surfaces of the bubbles of the froth. A large number of very small bubbles will trap the coffee liquid and particles around the bubbles very well (see diagram). If the milk has too many large bubbles, not only will the mouth-feel get affected, the coffee itself is not held and trapped so well within the bubbles. When the art is about to be created, the barista slows the rate of pouring such that the coffee does not get pulled up with the milk and instead the milk foam is allowed to float on top of the espresso where it remains white. It is this contrast between the trapped coffee in the fast-poured milk and the pure milk of the more slowly poured milk that leads to the contrasts of what is known as latte art.

beer foam, bubble size
The bubbles get larger as they move higher up in a foam column. Shown here in a narrow glass of Corsendonk Agnus (beer)

Now consider copper mining. It is an unfortunate fact that we as a society are very reliant on mined products including copper. Copper is the backbone of our electricity network meaning that if you are reading this at all, you are relying on copper that has been mined somewhere in the world. Mining is a fact of our modern way of life. The question is how to reduce its environmental impact to a minimum. One way to minimise the environmental aspect of mining would be to ensure that it is as efficient as possible. Copper is often found in two forms, a relatively easy to extract oxide and the sulphides of copper which are harder to extract. The ‘froth flotation’ technique has been developed to maximise the extraction of these sulphides by using a foaming vat in a process that is the exact opposite of latte art. The copper sulphide rocks are ground until they are very small (around 0.05mm diameter) whereupon they are reacted with chemicals that make them hydrophobic (resistant to bonding with water). Other particles and rocks, that are mined together with the copper sulphides, do not react with the chemicals and so are less hydrophobic. The resulting ‘grind’ is mixed into a slurry and then introduced into a chamber which is aerated to form bubbles. As they are hydrophobic, the copper sulphide particles attach themselves to the newly formed bubbles to reduce their contact with water. The bubbles are then carried up through the chamber, taking the copper with them. The small bubbles at the bottom of the vat trap a lot of water and waste material between them. As the bubbles move upwards through the vat, they get larger (by combining with each other) and, whereas the copper sulphides, which are chemically attached to the bubbles remain with the larger bubbles, the liquid and waste material drains out towards the bottom of the tank. The copper products can then just be skimmed off the top of the vat. Unlike latte art, larger bubbles are useful in froth flotation in order that particles do not get trapped between the bubbles. What is good for the copper mining is bad for the latte art and vice versa. The more we know about the bubbles in foams (in both latte art and froth flotation) the more efficient and the more aesthetically beautiful our world can be.

Another from Brew & Bread
Art for Christmas, another piece of great latte art from Brew & Bread

I would be very interested to know your thoughts on why a microfoam is needed for good latte art or indeed, any aspect of latte making. Please do feel free to share any good photos of latte art (or cafe recommendations) either here in the comments section or on Bean thinking’s Facebook page. There will be another latte art article in the New Year so new photographs (or cafe recommendations) would be greatly appreciated.

With special thanks to Oh Ying Ying for the photographs from Brew&Bread.