Categories
Coffee review Observations Science history

Hidden appearances at HoM

hot chocolate, soya, marsh mallow, HoM
Hot chocolate with marshmallows at HOM, Kings Cross.

In these long dark afternoons in the northern hemisphere, what could be better than a warming mug of lovely coffee in a bright environment? And so it was that we ended up at House of Morocco (HoM) on the Caledonian Road. Alerted by Brian’s Coffee Spot that Pattern Coffee had changed hands and become HoM we headed up to Kings Cross one damp afternoon in December to see how things had changed. Entering HoM is a strange mix of déjà-vu mixed with new. The pattern on the wall next to the window remains, as does the layout of the place. However it is also clear that much has changed since HoM took over.

There are murals and variously coloured cushions dotted around the café. Even in the darkness of the afternoon, the café was bright, but also crowded. We ordered a soya hot chocolate, a long black and a cheesecake and found a seat perched at a small table for two near the door (the only seat left at the time). The coffee, roasted by Terrone Coffee, was nicely balanced for the afternoon. But it seems that the hot chocolate and cheesecake combination were a real hit. The cheesecake was apparently very good (definitely worth a return visit apparently) while the hot chocolate went very quickly!

Inside the café, the windows were steaming up with the warmth of the inside. We over-heard that this was because of the coffee machine rather than any extra heating that had been installed. Does this suggest an alternative energy source? Coffee machine heaters to go with treadmill electricity generators in gyms?

all about pigmentation at HOM
Menu with sugar bowl and glazed tile at HOM, Kings Cross.

Meanwhile, the decoration was demanding my attention. A vividly coloured glazed tile supported a jar of sugar which was propping up a black and white menu. The menu had an illustration reminiscent of henna tattoos while above all of this balanced a peacock feather in a vase. Underneath the peacock feather was a poster advertising the “Phantom of the Opera”. The whole ensemble was suggestive of appearances and how they can be deceptive. The phantom of course wore a mask to disguise his disfigured face. But the peacock? The peacock is hiding something too.

Many of the colours that we see around us such as those making our coffee brown and making the tiles colourful are as a result of energy from the light being absorbed by the atoms in the substance (the coffee or the tile). This type of light absorption (and emission) can be connected with vortices in coffee as was discussed here. However the blues and greens in a peacock feather are different. If you look at the feather under a high powered microscope, you will find that the feathers are not dyed as such, in fact the natural colour of the feathers is quite dull. Made from keratin (as you can find in your fingernails) and melanin (responsible for the brown pigmentation of your skin, eyes and hair), the feathers do not seem blue at all. In fact it is the structure in the feather that is producing the colour rather than any dye that produces the colouration.

It turns out that there is a long history concerning our understanding of the colours of a peacock’s feather. It started with Robert Hooke who, in 1665 described the feathers of both peacocks and ducks and noticed that the colours he saw under an optical microscope were ‘destroyed’ by putting a drop of water on the feather. A little bit later and Isaac Newton was suggesting that the colouration was due to the thickness of the transparent bits of the feather. There’s a link here to coffee. Newton was suggesting that an effect similar to thin film interference (which causes the rainbow colours on the bubbles in a coffee) was causing the colours of the peacock feather.

appearances at HoM
Peacock feather and phantom poster with the top of a mirror. How does structure affect what is seen?

As our understanding developed through the centuries (and the microscopes became more powerful), it became apparent that while thin film interference (and multiple film interference) could cause some animals to appear as if they had certain colours, the peacock, along with some other animals, was a little bit more special. Rather than just being the result of reflection off an interface, the peacock’s feathers showed structure at the nanoscale (1/1000000 of a mm). The keratin and melanin in the feathers were arranged in a square lattice to form what is known as a ‘photonic’ crystal. The way this structure reacted with incoming light meant that only certain wavelengths were reflected from it. Depending on the size of the layering in the feathers, they appeared as blue, green or yellow.

Although a lot more is now understood about the factors, structural and chemical, that lead to colouration in all sorts of creature, be they butterflies or beetles, peacocks or pigeons, there is still more to discover, more to understand. The authors of the paper referenced here wrote

“In this paper, we describe a wide variety of structural colors occurring in nature and attempt to clarify their underlying physics, although many of them are not fully clarified.”

There’s clearly a lot more work to do before we can properly explain these “beautiful microstructures”.  And plenty of time to do so as we sit enjoying well made coffee and hot chocolate in a bright and warming café.

HOM can be found at 82 Caledonian Road, N1 9DN

 

Categories
Coffee review Observations Sustainability/environmental Tea

Breathing underwater at the London Particular

table and inside of the LP
Inside the London Particular

Tucked out of the way in New Cross, the London Particular has always been just that little bit far away to travel to, but always so tempting, a siren calling towards New Cross. The reviews of the food and the place were intriguing, while the coffee is roasted by HR Higgins, a roaster with a café that always seems closed when I get the opportunity to pass by (which is usually Sundays). So it was with some relief that I finally managed to get to the “LP” a couple of weeks ago. Towards the end of a row of shops, the space outside the café has plenty of seats where you can enjoy a spot of lunch and/or a coffee on a warm day. Inside feels more cosy. A bar on the left of the entrance forms a corridor with the wall that you walk through to get to a room with communal table at the back. In addition to the communal table, there are a series of individual high chairs along the wall. At the back of the café is a window with an old device sitting on it. “An old digital multi-meter” I said before being corrected by my sometime companion in these reviews, it has a dial, it must be an “analogue multi-meter” then! It did seem to be able to measure current and resistance and it did have a dial to indicate the value measured. Quite why it was sitting, unconnected, on the windowsill is anyone’s guess.

AMM, LP, NC
An Analogue multi-meter. But why was this sitting on the windowsill at the back of the cafe?

The lunch menu is good. Enough items there to provide choice, few enough that each can be done well. Significantly, the true London Particular, the pea soup, was not on the menu on the day we were there. We had a light bite of lunch, a black coffee and shared the jug of mint infused tap water that was placed on our section of the table. At the other end of the table, another customer was enjoying her lunch. So although communal, the table gave us enough room to be private and have our own conversation. A mirror along the wall above the table reflected the blackboard menu between the table and the bar. Thinking about mirror writing reminded me of Dr Florence Hensey and his letters of lemon juice ink. Back in the eighteenth century he had operated as a spy out of coffee houses on the Strand and in St Martin’s Lane¹. Spying on England for France, his letters, written in lemon juice (invisible ink) passed without detection before the frequency of correspondence drew suspicions. Times move on. Spies would surely no longer write in lemon juice or even mirror writing to avoid detection.

Lunch on a week day was a very good time to experience this café. It must get quite crowded at weekends or brunch times. So it was good to be able to sit back and contemplate our surroundings from the back of the café. In the foreground of our view though was the water jug. With fresh mint leaves stacked inside, it was evident that air had become trapped under some of the leaves forming tiny bubbles. How had the air got stuck there? Was it merely that the leaf was blocking the air bubble from rising through the water? Could there be slightly more to it?

Coffee and mint water in New Cross
Coffee and mint water at the LP

There is a popular expression “like water off a duck’s back”. Perhaps it arose because the duck’s back is often thought one of the most waterproof surfaces we know. But what makes the duck so waterproof? Why does water just form drops and then fall off the back of the duck? It is not because the feathers are oily. We sometimes ‘wax’ our waterproofs with a grease to make them resistant to getting wet and so perhaps we have thought that the duck’s back was just a bit greasy? And yet a study done back in 1944 showed that mere oil could not account for the waterproofing of the duck’s back.

Before delving into why the duck’s back is such a waterproof surface, it’s helpful to know how to quantify ‘waterproof-ness’ in the first place. To measure how waterproof something is, we use what is known as the contact angle, which is the angle that the drop makes with the surface on which it is sitting. Surfaces that are not waterproof (technically we call them “wettable” or hydrophilic), have very low contact angles, the ‘droplets’ of water on the surface are flattened. Waterproof surfaces on the other hand (imaginatively called hydrophobic), have contact angles which are much greater than 90º (it may be helpful here to have a look at the cartoon illustrating this point). Droplets that formed on a duck’s back had contact angles much greater than 90º, indeed, they formed almost spherical drops of water. What could be going on?

artemisdraws cartoon, contact angle, wettability
How ‘wettable’ a surface is can be defined by the contact angle that the drop makes with the surface. Image thanks to artemisworks.

The answer is in the details of the feather. The feather is not a flat surface but a material that has irregular protrusions and structure at the micro and nano-scale (one thousand and one million times smaller than mm scale respectively). These protrusions trap air within the feather and so effectively suspend the drop above the feather surface. The droplet does not have a flat surface on which to spread out. The structure means that the contact angles of the drops of water on a feather can be even higher than 150º; the droplets are held up almost as if they are spheres of water.

mint infused water at the LP New Cross
A breath of fresh air under water. Air bubbles trapped under mint leaves.

Another creature that uses the irregular protrusions on the hairs on its legs for waterproofing is the spider. The hairs on the legs of a spider mean that, just as the duck’s back, the spider’s legs are extremely waterproof. But it also means that air is trapped under the droplets. Consequently, if a spider finds itself submerged under water, the air under the droplets forms little bubbles similar to those under the mint leaf in the London Particular. And this allows a drowning spider the air it needs to breathe. Nanostructure helping the duck to dive and the spider to survive. And the mint water to be particularly refreshing on a warm day in a very pleasant place for a spot of lunch and a coffee.

 

 

 

The London Particular can be found at 399 New Cross Road, SE14 6LA

¹London Coffee Houses, Bryant Lillywhite, Pub 1963