A “flat white” could be ordered from many a coffee shop. A “flat black” may be a physical impossibility. We can realise this by gazing contemplatively, or perhaps even longingly, at a long black while it cools. Notice that the surface of the coffee is ever so slightly curved. Leaving aside the white mists that you may see skipping across the coffee surface, the coffee is flat in the middle of the cup but rises towards the edges. If you have noticed this, it is most probable that you did so because of the different way the light is reflected over the surface of the coffee. It is most obvious if you can arrange the reflections on the cup to reflect something supposedly straight: a window frame or a beam of strip light for example. The reflection is fairly clear and fairly straight until about 5mm from the edge of the cup where suddenly it bends. You can see an example of this in the photograph on the right.
The reason for the curvature is of course surface tension, which is the same effect that makes droplets form into shapes that are close to spheres. First investigated by Agnes Pockels and Lord Rayleigh in the nineteenth century, surface tension is caused by the fact that molecules at the surface of the water (in the coffee) will feel a net attraction to the other molecules within the water. There being no molecules of water above the surface of the cup, the surface molecules are pulled back towards the liquid in the cup. At the sides of the cup something slightly different is happening. There, the molecules in the water will be pulled back towards the liquid but will also experience the uncompensated attraction (or repulsion) from the atoms in the mug material. Exactly analogous to surface tension, but in the solid, the interaction of the surface energy of the mug with the surface tension of the liquid will pull the liquid into different shapes. It is for this reason that highly waterproof surfaces, such as fresh oak leaves, will form spherical drops of water, but wettable surfaces, such as an oak leaf in autumn, will accumulate flatter, less spherical droplets on the surface.
We see the effects of surface tension too when a bubble, or a small bit of dust, sits on the surface of the coffee. Again, looking at the light reflections, we see how the coffee, or tea, bends near the floating object showing how un-flat the surface really is. Bubbles are usually large enough that we can see them directly. In the photograph on this page for example, you can clearly see the reflections from the surface of the bubble together with the bent reflections of light from the surface of the liquid. However in the case of the dust, sometimes the dust is small enough that the reason that we see it is because of the change of the path of the light reflected from the surface. For a similar reason, the insects that skate the surface of a pond are visible because of the light patterns they make rather than their intrinsic visibility. Each time we are using the deviation of the light from its expected path in order to deduce the presence and shape of an object hidden to our view.
A similar deviation of the expected path of light is seen in the phenomenon of gravitational lensing which has been used to infer the presence of black holes. Such a deviation even provided experimental evidence for Einstein’s (then) recently proposed General Theory of Relativity, just over 100 years ago on May 29, 1919. The idea that light had weight and would be deflected by a gravitational field was not new, indeed, even the Newtonian model of gravity predicted that light would be deflected as it went past a massive object*. The question was how much and, as an important secondary question, how to measure it. As Arthur Eddington later described in his book “Space, Time and Gravitation”*, according to Newton, any object thrown horizontally on the Earth’s surface would fall 16 feet (in his use of units, 4.88 m in SI) in one second. The same was true for light. However with Einstein’s theory, the predicted deflection of light was 32′ (9.75m). The difficulty for the experimentalist is that in the same second, the light would have travelled nearly 300 000 km. Detecting such a small deflection over such a large distance would be difficult, harder than seeing a grain of dust on the coffee surface. Which is where the light deflection comes in. Because if you watch as the light from a distant star travels past a massive and fairly large object, such as the Sun, you should be able to discern the small, but significant deflection. And on May 29th 1919 a total solar eclipse (which thereby blocked the extra and interfering light from the Sun) offered a perfect opportunity for Eddington and an expedition sent by the Royal Society and Royal Astronomical Society (to Brazil and West Africa) to attempt to measure such a deflection.
Although the deflection was significant, working with large telescopes and photographic plates, the magnitude of the deflection of the light that they were looking for was still only 1/1500 of an inch on the photographic plate. Two groups at two different locations took multiple photographs of the eclipsed Sun and the stars around it in order to measure the position of the stars as seen behind the Sun and then compare that to the position of the stars when they had been photographed earlier in the year without the Sun between them and the Earth. Eddington describes the experiment:
“There is a marvellous spectacle above, and, as the photographs afterwards revealed, a wonderful prominence-flame is poised a hundred thousand miles above the surface of the sun. We have no time to snatch a glance at it. We are conscious only of the weird half-light of the landscape and the hush of nature, broken by the calls of the observers, and beat of the metronome ticking out the 302 seconds of totality.”
Finally after developing and comparing the images back in London, the team confirmed a deflection of 1″.98 +/- 0″.12 (Brazil) and 1″.61 +/- 0″.30 (W. Africa) for the stars closest to the Sun (NB. 1″ indicates 1 second of arc). Einstein’s theory had predicted a deflection of 1″.74, Newton’s theory had predicted 0″.87. The results of the light deflection were far more in agreement with Einstein’s new theory of General Relativity than with the classical Newtonian model.
The ‘wobble’ of a few of the stars on the photographic plates had confirmed a prediction of the theory of Relativity. Which could lead to the question: What do you see, or not, as the light dances off of your coffee?
*”Space, Time and Gravitation: an outline of the General Theory of Relativity”, Sir Arthur Eddington, Cambridge University Press, first printed 1920, 1968 edition.