Recently there has been considerable discussion about the impact of water on the taste of your coffee. Although this is interesting not only from a chemistry perspective, but also an experimental design and an environmental one, Bean Thinking is probably not the best place to explore such effects of chemistry on coffee taste. If you are interested, there is a recent article about it in Caffeine Magazine, click here. Instead, on Bean Thinking, the idea would be to go a little more fundamental and ask instead what is the impact of water on coffee? What effect does dripping water have on the craters produced in freshly roasted coffee grinds?
You may have noticed craters produced by rain drops on sand or paused while preparing your drip brew to think about the different ways that water percolates through a filter compared to an espresso puck. But have you stopped to consider what determines the shape of the crater that is produced as a falling droplet impacts a loose bed of granular material (such as coffee). Perhaps you have looked at images of the Chicxulub crater on the Yucatan peninsula and wondered about asteroid impacts on the Earth or craters on the Moon but what about something closer to home? What if the impacting object were liquid and the impact surface more sand like? It’s a problem that affects how rain is absorbed by soil as well as the manufacture of many drugs in the pharmaceutical industry. But it is also something that we could experiment with in coffee. Is there a difference between craters formed in espresso pucks compared to those in the coffee in the filter paper of a V60?
Recently, a study appeared in Physical Review E that investigated the crater shapes produced by water droplets on a bed of dry glass beads (imitating sand). The effect of the impact speed of the water droplet as well as the packing density of the granular bed (sand/coffee) was studied. A high speed camera (10 000fps) was used in combination with a laser to reveal how the shape of the craters changed with time, from the initial impact right through until the crater was stable. The authors came up with a mathematical model to consider how the energy of the falling droplet was distributed between the impacting drop and the sand bed. Does the droplet of water deform first or does the energy of the impact go into displacing the sand and so forming the crater?
Perhaps unsurprisingly, when drops of water fell onto dense beds of sand (think espresso pucks but not quite so packed), the craters produced were quite shallow. It would take a lot of energy to displace the densely packed sand but not quite so much to deform the droplet. But when the drops fell onto looser sand beds (think drip brew coffee) the crater produced formed in two stages and depended on the velocity of impact. A deep crater was formed as the drop first impacted the sand. Then as the camera rolled, the sides of the crater started to avalanche producing much wider craters that had different shapes in profile (from doughnut to pancake type structures). For looser beds of sand, the faster the impacting drop, the wider the final crater. You can read a summary of the study here.
So what would happen for craters produced during making an espresso compared to those produced making a drip brew? A first approximation would be that the espresso coffee is more densely packed, so the craters should be shallower and less wide than those produced in the loose packed filter coffee. However then we need to think that the water used in making espresso is forced through the puck with high energy. In contrast, in drip brewing techniques, the water used has a lower impact energy, (it could be said that the clue is in the name). So the energy of the impact would form larger craters in the espresso pucks and smaller craters in the drip brewers, an opposite expectation from that of the packing densities, which effect wins?
But is there anything else? Grind size! Espressos are made using finely ground coffee beans, with a typical “grain size” being about 10μm (0.01mm). Drip brewed coffee is somewhat coarser, a typical medium grind being compared to grains of sand (which vary between 0.05-2mm, 50 – 2000μm but we’d expect ‘medium’ ground coffee to be at the lower end of that). This is fairly similar to the ‘sand’ used in the study in Phys Rev E which used grains of size 70-110 μm. A slightly earlier study had shown how the crater shape depended on grain size for ‘sand’ ranging from 98 to 257 μm. That study had revealed that how the water interacted with the different grain sizes depended in turn on whether those grains were hydrophilic (wettable) or hydrophobic (water proof). It is probably safe to assume that the coffee used in an espresso grind has the same hydrophilic properties as the coffee used in drip brew but even so, we still have those three variables to contend with, packing density, impact energy and grind size. So, happy experimenting! Let’s find out how the impact craters left in coffee change with preparation method. And whatever else, it’s a perfect excuse (if one were really needed) to drink more coffee while slowing down and properly appreciating it.
With thanks to Dr Rianne de Jong for pointing me in some interesting directions (not all of which fitted in this piece) towards the interaction of water with coffee, more coming soon I hope.