Categories
Allergy friendly cafe with good nut knowledge Coffee review Home experiments Observations Science history

Bend it like sugar at Muni, Fulham Road

Muni Coffee, near Chelsea and Westminster hospital
Muni Coffee on Fulham Road

The area around Fulham Road and Chelsea & Westminster hospital is one that has long been fairly empty of speciality coffee establishments. Then, in June this year, Muni opened up on Fulham Road (just over 200 m from the main entrance of the hospital, in case you are visiting and looking for a good café nearby). Muni’s website emphasises its social mission, knowing the farmers they trade with by name and introducing Filipino coffee to the UK. Inside, there are plenty of tables (with more outside if you are visiting in warmer times). There is a menu on the wall behind the counter to your right as you enter, but I missed the listing of the Pandan iced tea (which would have been very interesting to try) as I was obviously not paying enough attention and instead opted for my default trying-a-new-cafe coffee, a black Americano.

My sometimes companion in these reviews had a soya hot chocolate while I was very confident to enjoy one of the (lovely) salted caramel brownies because Muni lists all the ingredients for all of their cakes on a tablet device at the counter and so I was encouraged to double-check the ingredients list to see that there was nothing vaguely nut-related in it. A very good feature and this cafe definitely gets a tick in the “cafes with good nut knowledge” category on the right (as well as the new allergy-friendly category). As mentioned, the coffee is imported directly from the farmers in the Philippines, and roasted by Muni in North London. The black Americano I tried was fruity and flavoursome, while the beans I purchased and prepared later using a V60 produced a sweet and floral brew, perhaps with blueberry notes (but with no tasting notes on the packet, I’d be interested to see if others agree with me on this, please let me know in the comments section below).

coffee cake Muni
Coffee and nut-free salted caramel brownie at Muni

On the ceiling, wooden beams had cracked and aged creating a lovely aesthetic and taking me on a thought trail that involved aeroplane engines and heat process treatments. But then I noticed something else. As it was getting dark, the cars passing by on the busy Fulham Road were mostly using their headlights and this meant that, every so often, the edges of the windows around the door changed these headlights into a spectrum of colour. Flashes of blue, red and green as each car passed. It reminded me of Newton’s experiments in which he used a prism to first separate sunlight into its various colours before recombining it with another prism into white light. An effect that led me to think about an instrument that has been advertised as a tool to creating better coffee: the coffee refractometer.

Some of the same physics links Newton’s prism with the coffee refractometer. Perhaps you remember “Snell’s law” from school. The equation describes how much deviation light experiences as it passes from one medium (air) to another medium (glass or coffee). Light travels at different speeds through different media and the refractive index can be thought of as an indicator of the degree to which each medium slows down the light.

the door at Muni
The window at the side of the door at Muni. Rainbows of colour were produced by the headlights of cars as they went by.

For the prism, the important detail is that light is composed of many colours (which means in this context, many wavelengths) and not all wavelengths are slowed to the same degree. This means that the refractive index of the glass prism is slightly different for red light than it is for blue. Consequently, the spectrum opens up as the white light travels through the prism.

For the coffee refractometer, the important point is slightly different. Water containing dissolved solids has a slightly different refractive index than pure water. Measuring the deviation of a light beam through a drop of coffee therefore gives an idea of the concentration of “total dissolved solids” and so a guide to the extraction of coffee from the grind that you have achieved. The difference in refractive index is however quite small, if the measurements here can be relied upon, while water has a refractive index of 1.333 (at 20ºC), a well extracted coffee showed a refractive index of 1.335. We can calculate how much difference this makes to the angle that the light is deflected: Assuming light enters the drop at an angle of 30º, the angle that light is refracted in water is 22.03º, while in the coffee it is 22.00º. A small effect that would be quite difficult to measure unless you had a refractometer.

However, there is an ingredient in some people’s coffee that bends light enormously: sugar (though I do hope that no one reading this uses it in the quantities needed for the experiment below). The refractive index of water is very dependent on the total concentration of dissolved sugar it contains. Therefore you can do a really cool experiment in which a sugar solution (which has more concentrated sugar at the bottom than the top) can be seen to bend the path of a laser beam. All the equipment can be easily found at home (or purchased for not too much from hardware/office equipment shops). Let me know if you try the experiment how you get along (and if you decide to try using a refractometer to enhance your coffee brewing experience). The video was shared on youtube by the Amateur Astronomical Spectroscopy group (CAOS).

Muni coffee is at 166 Fulham Road, SW10 9PR. Just around the corner on Drayton Gardens, is the blue plaque for Rosalind Franklin who used to live at an address there.

 

Categories
Coffee cup science General Observations slow Tea

What haloes and crowns reveal about your coffee

Coffee Corona
Look carefully around the reflected white light. Do you see the rainbow like pattern?

Several weeks ago I had been enjoying some very good black coffee at OJO in Bangsar, KL. As is fairly typical for me, I had been trying to observe the white mists that form just above the coffee. White mists are fascinating, tissue-like clouds that you can often see hovering above the coffee. They form, tear suddenly and then reform into a slightly different pattern. As I was photographing my coffee, I noticed what seemed to be interference patterns on the mists (see picture), just like oil on water, a rainbow-like shimmering over the coffee surface. Yet that explanation did not make sense; interference patterns form because the layer of oil on water has approximately the same thickness as the wavelength of visible light (see more info here). The water droplets that make up the white mists are a good 15 times thicker than the wavelength of light. It is not possible that these mists are producing interference effects, it has to be something else.

Then, last week and back in London, I was walking towards the setting Sun one evening when I saw what looked like a rainbow in a cloud. What caused this and how was it related to what I had seen earlier in my coffee? A short trip to the library later and it was confirmed. What I had seen in the clouds was most likely a Sun-dog. Formed by the refraction of sunlight by ice crystals in the atmosphere, Sun-dogs manifest as bright regions of rainbow. The Sun-dog appeared in cirrus clouds because these are made from the sort of ice crystals that produce brilliant Sun-dogs. These ice crystals are flat and hexagonal so they refract sunlight exactly as does a prism. Just like a prism, red light and blue light will be refracted by differing amounts and so they will appear at different places in the sky. The minimum angle of refraction produces the most intense colouration and, for hexagonal platelets of ice, this occurs at 22º away from the light source.

Sun-dog, Sun dog
A Sun-dog in the clouds to the right of the setting Sun

I do not find degrees a particularly helpful way of thinking about distance but what helped me is that, in terms of the sky, if you hold your outstretched hand out at arms length, the distance from your thumb to the tip of your finger is, approximately, 22º. Hence, if you see a halo around the Sun at about that distance, it is most likely a refraction effect due to ice crystals in the sky and if you see an intense rainbow roughly parallel to the elevation of the Sun, it is very likely to be a Sun-dog.

What does this tell us about the colours in the mists above the coffee? Well, clearly the mists are not made of ice crystals but neither is the ‘rainbow’ colouring as far as 22º from the light source (a light bulb reflected in the coffee). Also, the rainbow is less vivid and, if you look closely, inverted from the rainbow in the clouds. In the cloud, the inner edge of the arc was red and the outer edge blue, in the coffee, the outer edge is more reddish, while the inner is more blue-ish. This is another clue. On the same evening as I had seen the Sun-dog, there was a full moon and around the Moon was a glowing ring, tinged slightly reddish on the outside. The ring was far closer to the Moon than the Sun-dog had been to the Sun. This Moon-ring, and the coffee colouring are the same effect, they are examples of ‘corona’ (literally crown) and they are caused by diffraction of light rather than refraction.

straw, water, glass
It is refraction that makes the straw appear broken in this glass of water.

Refraction we are all quite familiar with, it is the bending of a straw in a glass of water as you look through the glass. Diffraction is a little more tricky, but it is a consequence of how the light moves past an object. It can be understood by thinking about how water waves pass objects in a stream (or by playing with the simulation here). The amount that the wave is diffracted depends on both the size of the object and the wavelength of the wave. As blue light has a much shorter wavelength than red light, the blue will be diffracted by a different amount to the red. If the objects diffracting the light are of a similar size (as water droplets in white mists are going to be) a spectrum, or a rainbow of colour will appear around the light source. The more uniform the droplet size, the more vivid the spectrum in the corona. The thin cloud around the Moon that evening was made up of many different sized droplets and so the rainbow effect was very subtle. In contrast, around the reflection of the light bulb in the coffee, the water droplets in the white mist are a fairly similar size and so the spectrum is more vividly seen.

Seeing rainbow effects in the sky (or in the coffee) therefore gives us many clues as to what is in the sky or indeed, levitating above the coffee. Please do send me any pictures you have of coronae around light source reflections in your coffee, or indeed sun dogs if you are fortunate enough to see them*.

* Sun dogs are in fact apparently fairly common, it is more that we have to be attentive to see them.