Everything is connected. At least, that is part of the premise of Bean Thinking, where the physics of a coffee cup is used to explore the physics of the wider world. So it was great to stumble upon a new connection that I had not previously appreciated¹.
The connection is between climate science and that wonderful pastime of pulling a spoon through coffee and watching the vortices form behind it. Yet the research that revealed this connection was not looking for links between coffee and the atmosphere. Instead the researchers were interested in something seemingly (and hopefully) very far from a coffee cup: rogue waves.
Rogue waves are rare and extremely large waves that have been the subject of mariners tales for many years. Nonetheless, it is only relatively recently that they have become the subject of scientific research, partly because they are so rare and so outside our usual experience that they were thought to be the stuff of myth rather than of science. So it is only now that we are developing an understanding of how it can be that, in amongst a number of smaller waves, a massive wave of 20m height can suddenly appear, apparently out of nowhere. One of the groups looking at this problem investigated the effect of a particular sort of (known) instability on a series of waves in water. However, unlike other research groups, this particular study included the effect of the air above the water as well as the waves themselves.
Although this sounds a simple idea, modelling water waves in air is actually extremely complex. To do so, the authors of the study had to use a computer simulation of the air-water interface. It is not the sort of problem that can be solved analytically, instead the computer has to crunch through the numerical solutions. In order to start to see what was going on with the rogue waves, the authors had to simulate multiple waves of different amplitudes. Each simulation took weeks to perform. Given that this was only a few years ago (the study was published in 2013), you can start to see why people had previously been approximating water waves as waves in water (without worrying too much about the air interface).
Now here is where the link with coffee comes in. The group modelled waves as a function of steepness and found that, above a critical steepness, the wave breaking caused significant interaction between the air and the water layers. In addition to the bubbles that form when waves break, the movement of the air over the breaking wave formed into a vortex which, when it interacted with the back of the wave created an opposite vortex: a vortex dipole “much like the vortices that form behind a spoon dragged through a cup of coffee“.
Just as with the vortices in the coffee cup, vortices were forming in the air behind the wave crest (which acted as the spoon) and travelled upwards through the atmosphere and away from the waves. As each wave broke, a train of vortex dipoles were produced that twirled off into the sky. Imagine a coffee bath and multiple spoons rather than a coffee cup. The authors suggested that these vortices could carry aerosols from the sea (salt, water droplets etc) into the atmosphere. Travelling within the vortices, these tiny particles could travel far further and far higher than we may have expected otherwise. Such aerosols can be critical for cloud formation and so the effect of these breaking waves could be important for climate modelling.
While an undergraduate, I had an opportunity to study a course in atmospheric physics. I remember the lecturer lamenting that while we (as a community, but not really as the students sitting in the lecture theatre at that time) understood atmospheric modelling quite well and that we understood how to model the oceans fairly well, we got problems when we tried to put the two sets of models together. It was clear that something wasn’t quite right. Years later, it seems that at least past of the reason for that is linked to those vortices that you see as you pull your spoon through your coffee cup.
Everything is connected indeed.
A summary of the study can be found here. The abstract (and link to the pdf) of the published paper can be found here. If you do not have access to the journal through a library, an early, but free, version of the paper is here – note though that this version may not include the amendments included after peer review.
¹A quote attributed to Jean-Baptiste Biot (1774-1862), is perhaps relevant here “Nothing is so easy to see than what has been found yesterday, and nothing more difficult than what will be found tomorrow.”